

gordon-gcp: GCP Plugins for Gordon and Gordon Janitor

Event-driven Cloud DNS and DNS Reconciliation Services

Google Cloud Platform (GCP) plugins for gordon [https://github.com/spotify/gordon], an open-source, event-driven service for 3rd party DNS providers, and for gordon-janitor [https://github.com/spotify/gordon-janitor], an open-source service that checks Cloud DNS records against a source of truth (e.g. Compute Engine) and submits corrections to gordon [https://github.com/spotify/gordon] via Google Pubsub.

The gordon-gcp plugins add optional support for the following:

Service:

	Consuming events from Google Cloud Pub/Sub [https://cloud.google.com/pubsub/docs]

	Reading from Google Compute Engine [https://cloud.google.com/compute/docs] for record information

	Creating, updating, and deleting records within Google Cloud DNS [https://cloud.google.com/dns/docs]

Janitor:

	Reading instance lists from Google Compute Engine [https://cloud.google.com/compute/docs]

	Comparing record sets from Google Compute Engine [https://cloud.google.com/compute/docs] and Google Cloud DNS [https://cloud.google.com/dns/docs]

	Publishing any required DNS changes to Google Cloud Pub/Sub [https://cloud.google.com/pubsub/docs]

Release v0.0.1.dev38 (What’s new?).

Warning

This is still in the planning phase and under active development. Gordon, Gordon Janitor, and these plugins should not be used in production yet.

Requirements

	Python 3.6

	Google Cloud Platform account

	Service account JSON key that has relevant access (i.e. read and/or write) to the plugin service you want to use (e.g. Google Cloud DNS, Pub/Sub, or Compute Engine). See Google’s documentation [https://cloud.google.com/iam/docs/creating-managing-service-account-keys] on how to create a key.

Support for other Python versions may be added in the future.

Development

For development and running tests, your system must have all supported versions of Python installed. We suggest using pyenv [https://github.com/yyuu/pyenv].

Setup

$ git clone git@github.com:spotify/gordon-gcp.git && cd gordon-gcp
make a virtualenv
(env) $ pip install -r dev-requirements.txt

Running tests

To run the entire test suite:

outside of the virtualenv
if tox is not yet installed
$ pip install tox
$ tox

If you want to run the test suite for a specific version of Python:

outside of the virtualenv
$ tox -e py36

To run an individual test, call pytest directly:

inside virtualenv
(env) $ pytest tests/test_foo.py

Build docs

To generate documentation:

(env) $ pip install -r docs-requirements.txt
(env) $ cd docs && make html # builds HTML files into _build/html/
(env) $ cd _build/html
(env) $ python -m http.server $PORT

Then navigate to localhost:$PORT!

To watch for changes and automatically reload in the browser:

(env) $ cd docs
(env) $ make livehtml # default port 8888
to change port
(env) $ make livehtml PORT=8080

Code of Conduct

This project adheres to the Open Code of Conduct [https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md]. By participating, you are expected to honor this code.

User’s Guide

	Service Configuration

	Janitor Configuration

	Schemas for Event Consuming

	Load and Validate Schemas

	Plugins

	Gordon Service

	Gordon Janitor

	API Clients

	Exceptions

Project Information

	License and Credits

	How to Contribute

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Service Configuration

Configuring Google Cloud Platform Plugins for the gordon [https://github.com/spotify/gordon] service.

Example Gordon Configuration with GCP Plugin

Gordon Core Config
[core]
[core.logging]
level = "debug"
handlers = ["syslog"]

Plugin Config
[gcp]
project = "my-gcp-project"
dns_zone = "example.com."
default_zone_prefix = "production"

[gcp.enricher]
keyfile = "/path/to/keyfiles/compute.json"

[gcp.event_consumer]
keyfile = "/path/to/keyfiles/pubsub.json"
topic = "my-dns-changes"
subscription = "gordon-consumer"
max_messages = 25
max_msg_age = 300

[gcp.publisher]
project = "my-dns-project"
keyfile = "/path/to/keyfiles/dns.json"
publish_wait_timeout = 10
default_ttl = 300

Plugin Configuration

Attention

Configuration defined for a specific provider (event_consumer, enricher, publisher) will overwrite values of the same keys defined under gcp, then inherit the rest.

Attention

A specific provider does not have access to configuration for the other individual providers.

Note

Any configuration key/value listed here may also be used in the specific plugin configuration. Values set in a plugin-specific config section will overwrite what’s set in this general [gcp] section.

[gcp]

	
project="STR"

	Required: Google Project ID which hosts the relevant GCP services (e.g. Cloud DNS, Pub/Sub, Compute Engine).

To learn more about GCP projects, please see Google’s docs on creating & managing projects.

	
dns_zone="STR"

	Required: DNS zone to administer. Must be a fully-qualified domain name (FQDN), ending in ., e.g. example.com.. If it’s a reverse zone, it must be in the form ‘A.B.in-addr.arpa.’. This setting must be either in this section, or in both the [gcp.event_consumer] and [gcp.publisher] sections.

Note: this is separate from Google’s ‘managed zone’ names. Google uses custom string names with specific requirements [https://cloud.google.com/dns/api/v1/managedZones#resource] for storing records. Gordon requires that managed zone names be based on DNS names. For all domains, remove the trailing dot and replace all other dots with dashes. For reverse records, then use only the two most significant octets, prepended with ‘reverse-’. (E.g. foo.bar.com. -> foo-bar-com and 0.168.192.in-addr.arpa. -> reverse-168-192.)

	
keyfile="/path/to/keyfile.json"

	Optional: Path to the Service Account JSON keyfile to use while authenticating against Google APIs. If not provided the default Service Account will be used instead.

While one global key for all plugins is supported, it’s advised to create a key per plugin with only the permissions it requires. To setup a service account, follow Google’s docs on creating & managing service account keys.

	
default_zone_prefix="STR"

	Optional: Prefix associated with Google managed zone names, prepended with a ‘-’ to the generated name.
For example prefix “production” will produced a managed zone name of “production-example-com” for the
“example.com.” DNS zone.

[gcp.event_consumer]

All configuration options above in the general [gcp] may be used here. Additional Google Pub/Sub Consumer-related configuration options are:

	
topic="STR"

	Required: A topic to which the Event Consumer client must subscribe.

For more information on Google Pub/Sub topics, please see Google’s docs on managing topics.

	
subscription="STR"

	Required: A subscription to the topic from which the Event Consumer client will pull.

For more information on Google Pub/Sub subscriptions, please see Google’s docs on managing subscriptions.

	
max_messages=INT

	Optional: Number of Pub/Sub messages to process at a time. Defaults to 25.

	
max_msg_age=INT

	Optional: Discard incoming messages older than this many seconds. Defaults to 300.

[gcp.enricher]

All configuration options above in the general [gcp] may be used here. If
dns_zone isn’t present here, it must be in [gcp].

[gcp.publisher]

All configuration options above in the general [gcp] may be used here. If
dns_zone isn’t present here, it must be in [gcp]. Additional Google
Cloud DNS configuration options are:

	
default_ttl=INT

	Required: The default TTL in seconds. This will be used if the publisher receives a record set to be published that does not yet have the TTL set. Must be greater than 4.

	
publish_wait_timeout=INT|FLOAT

	Optional: Timeout in seconds for waiting for confirmation that changes have been successfully completed within Google Cloud DNS. Default is 60 seconds.

	
api_version="STR"

	Optional: API version for both the changes [https://cloud.google.com/dns/api/v1/changes] endpoint and the resource records [https://cloud.google.com/dns/api/v1/resourceRecordSets/list] endpoint.

Janitor Configuration

Configuring Google Cloud Platform Plugins for the gordon-janitor [https://github.com/spotify/gordon-janitor] service.

Example Configuration

An example of a gordon-janitor.toml file for GCP-specific plugins:

Example for Gordon Janitor GCP-related Config
[core]
plugins = ["gcp.gdns"]

[gcp]
cleanup_timeout = 60

[gcp.gdns]
keyfile = "/path/to/dns-service-account.json"
project = "gordon-dns-example"
scopes = ["ndev.clouddns.readonly"]
default_zone_prefix = "production"

[gcp.gpubsub]
keyfile = "/path/to/pubsub-service-account.json"
project = "gordon-pubsub-example"
topic = "dns-changes-topic"

[gcp.gce]
keyfile = "/path/to/crm-service-account.json"
scopes = ["cloud-platform"]
dns_zone = "example.com."
metadata_blacklist = [["key", "val"], ["other_key", "other_val"]]
tag_blacklist = []
project_blacklist = []
This is passed directly to GCE's v1.instances.aggregatedList endpoint
instance_filter = ""

Plugin Configuration

The following sections are supported:

gcp

Any configuration key/value listed here may also be used in the specific plugin configuration. Values set in a plugin-specific config section will overwrite what’s set in this general [gcp] section.

	
project="STR"

	Required: Google Project ID which hosts the relevant GCP services (e.g. Cloud DNS, Pub/Sub, Compute Engine).

To learn more about GCP projects, please see Google’s docs on creating & managing projects [https://cloud.google.com/resource-manager/docs/creating-managing-projects].

	
keyfile="/path/to/keyfile.json"

	Optional: Path to the Service Account JSON keyfile to use while authenticating against Google APIs. If not provided the default Service Account will be used instead.

While one global key for all plugins is supported, it’s advised to create a key per plugin with only the permissions it requires. To setup a service account, follow Google’s docs on creating & managing service account keys [https://cloud.google.com/iam/docs/creating-managing-service-account-keys].

Attention

For the Pub/Sub plugin, keyfile is not required when running against the Pub/Sub Emulator [https://cloud.google.com/pubsub/docs/emulator] that Google provides.

	
scopes=["STR","STR"]

	Optional: A list of strings of the scope(s) needed when making calls to Google APIs. Defaults to ["cloud-platform"].

	
cleanup_timeout=INT

	Optional: Timeout in seconds for how long each plugin should wait for outstanding tasks (e.g. processing remaining message from a channel) before cancelling. This is only used when a plugin has received all messages from a channel, but may have work outstanding. Defaults to 60.

	
default_zone_prefix="STR"

	Optional: Prefix associated with Google managed zone names, prepended with a ‘-’ to the generated name.
For example prefix “production” will produced a managed zone name of “production-example-com” for the
“example.com.” DNS zone.

Note: This prefix must be the same as that used by the Gordon Service to work correctly.

gcp.gdns

All configuration options above in the general [gcp] may be used here. There are no specific DNS-related configuration options.

gcp.gpubsub

All configuration options above in the general [gcp] may be used here. Additional Google Cloud Pub/Sub-related configuration is needed:

	
topic="STR"

	Required: Google Pub/Sub topic to receive the publish change messages.

Attention

For the Pub/Sub plugin, keyfile is not required when running against the Pub/Sub Emulator [https://cloud.google.com/pubsub/docs/emulator] that Google provides.

gcp.gce

All configuration options from the general [gcp] section may be used here.

Additional plugin-specific configuration is needed:

	
dns_zone="STR"

	Required: DNS zone to pull records from. Must be a fully-qualified domain name (FQDN), ending in ., e.g. example.com.. If it’s a reverse zone, it must be in the form ‘A.B.in-addr.arpa.’.

Note: this is separate from Google’s ‘managed zone’ names. Google uses custom string names with specific requirements [https://cloud.google.com/dns/api/v1/managedZones#resource] for storing records. Gordon requires that managed zone names be based on DNS names. For all domains, remove the trailing dot and replace all other dots with dashes. For reverse records, then use only the two most significant octets, prepended with ‘reverse-’. (E.g. foo.bar.com. -> foo-bar-com and 0.168.192.in-addr.arpa. -> reverse-168-192.)

	
metadata_blacklist=[["STR","STR"],["STR","STR"]]

	Optional: List of key-value pairs that will be used to filter out unwanted GCE instances by instance metadata [https://cloud.google.com/compute/docs/storing-retrieving-metadata]. Note that both the key and the value must match for an instance to be filtered out.

	
tag_blacklist=["STR","STR"]

	Optional: List of network tags [https://cloud.google.com/vpc/docs/add-remove-network-tags] that will be used to filter out unwanted GCE instances.

	
project_blacklist=["STR","STR"]

	Optional: List of unique, user-assigned project IDs (projectId) that will be ignored when fetching projects.

	
project_whitelist=["STR","STR"]

	Optional: List of unique, user-assigned project IDs (projectId) that will be used to fetch instances. If set, janitor will only look at these projects, it will not fetch active projects and the project_blacklist will be ignored.

	
instance_filter="STR"

	Optional: String used to filter instances by instance attributes. It is passed directly to GCE’s v1.instances.aggregatedList [https://cloud.google.com/compute/docs/reference/rest/v1/instances/aggregatedList] endpoint’s filter parameter.

Schemas for Event Consuming

Definitions

This package defines two types of schemas for consuming events by the Google Pub/Sub Event Consumer plugin: Google Audit Log Message and a General Event Message.

Google Audit Log Message

The Google Audit Log Message schema is based off of Google’s Audit Log [https://cloud.google.com/logging/docs/reference/audit/auditlog/rest/Shared.Types/AuditLog] datatype for Cloud Audit Logging [https://cloud.google.com/logging/docs/audit/]. Documentation on setting up the exporting of Google Cloud audit logs to Google Pub/Sub (a.k.a. a “sink”) can be found here [https://cloud.google.com/logging/docs/audit/#exporting_audit_logs]. You may need to refine the export to include the following filters [https://cloud.google.com/logging/docs/view/advanced-filters]:

resource.type=gce_instance
protoPayload."@type"="type.googleapis.com/google.cloud.audit.AuditLog"

Schema Definition

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "id": "https://github.com/spotify/gordon-gcp/blob/master/gordon_gcp/schemas/audit-log.schema.json",
 "title": "Google Audit Log Messages",
 "description": "Schema for parsing Google Audit Log Messages",
 "required": ["protoPayload", "logName"],
 "properties": {
 "protoPayload": {
 "type": "object",
 "properties": {
 "methodName": {
 "type": "string",
 "description": "Action performed on a GCP",
 "enum": [
 "v1.compute.instances.insert",
 "v1.compute.instances.delete"
]
 },
 "resourceName": {
 "type": "string",
 "description": "",
 "examples": [
 "projects/a-project-id/zones/a-zone-name/instances/an-instance-name"
],
 "pattern": "^projects/([0-9]+|[a-z][a-z\\-0-9]{5,29})/zones/[a-z\\-0-9]+/instances/[a-z\\-0-9]+"
 }
 },
 "required": ["methodName", "resourceName"]
 },
 "logName": {
 "type": "string",
 "description": "Name of audit log",
 "examples": [
 "projects/a-project-id/logs/cloudaudit.googleapis.com%2Factivity"
],
 "pattern": "^projects/[a-z][a-z\\-0-9]{5,29}/logs/cloudaudit.googleapis.com%2Factivity"
 },
 "receiveTimestamp": {
 "type": "string",
 "description": "Time the log entry was received by Stackdriver Logging",
 "examples": [
 "2018-01-01T23:13:45.123456789Z"
]
 },
 "timestamp": {
 "type": "string",
 "description": "Time the operation status was reported",
 "examples": [
 "2018-01-01T23:13:45.123456789Z"
]
 }
 }
}

Examples

Audit Log Message with an operation.first key:

{
 "insertId": "123456789101112",
 "logName": "projects/some-project/logs/cloudaudit.googleapis.com%2Factivity",
 "operation": {
 "first": true,
 "id": "operation-1234-5678-9101-1121",
 "producer": "compute.googleapis.com"
 },
 "protoPayload": {
 "@type": "type.googleapis.com/google.cloud.audit.AuditLog",
 "authenticationInfo": {
 "principalEmail": "not-real@cloudservices.gserviceaccount.com"
 },
 "authorizationInfo": [
 {
 "granted": true,
 "permission": "compute.instances.create"
 }
],
 "methodName": "v1.compute.instances.insert",
 "request": {
 "@type": "compute.googleapis.com/compute.instances.insert"
 },
 "requestMetadata": {
 "callerSuppliedUserAgent": "Managed Infrastructure Mixer Client"
 },
 "resourceName": "projects/123456789101/zones/us-central1-c/instances/an-instance-name-b34c",
 "response": {
 "@type": "compute.googleapis.com/operation",
 "id": "234567891011121314",
 "insertTime": "2017-12-04T12:13:44.785-08:00",
 "name": "operation-1234-5678-9101-1121",
 "operationType": "insert",
 "progress": "0",
 "selfLink": "https://www.googleapis.com/compute/v1/projects/some-project/zones/us-central1-c/operations/operation-1234-5678-9101-1121",
 "status": "PENDING",
 "targetId": "123456789101213141",
 "targetLink": "https://www.googleapis.com/compute/v1/projects/some-project/zones/us-central1-c/instances/an-instance-name-b34c",
 "zone": "https://www.googleapis.com/compute/v1/projects/some-project/zones/us-central1-c"
 },
 "serviceName": "compute.googleapis.com"
 },
 "receiveTimestamp": "2017-12-04T20:13:45.494149958Z",
 "resource": {
 "labels": {
 "instance_id": "123456789101213141",
 "project_id": "some-project",
 "zone": "us-central1-c"
 },
 "type": "gce_instance"
 },
 "severity": "NOTICE",
 "timestamp": "2017-12-04T20:13:44.181Z"
}

Audit Log Message with an operation.last key:

{
 "insertId": "123456789101112",
 "logName": "projects/some-project/logs/cloudaudit.googleapis.com%2Factivity",
 "operation": {
 "id": "operation-1234-5678-9101-1121",
 "last": true,
 "producer": "compute.googleapis.com"
 },
 "protoPayload": {
 "@type": "type.googleapis.com/google.cloud.audit.AuditLog",
 "authenticationInfo": {},
 "methodName": "v1.compute.instances.insert",
 "requestMetadata": {
 "callerSuppliedUserAgent": "Managed Infrastructure Mixer Client"
 },
 "resourceName": "projects/123456789101/zones/us-central1-c/instances/an-instance-name-b45c",
 "serviceName": "compute.googleapis.com"
 },
 "receiveTimestamp": "2017-12-04T20:13:51.414016721Z",
 "resource": {
 "labels": {
 "instance_id": "123456789101213141",
 "project_id": "some-project",
 "zone": "us-central1-c"
 },
 "type": "gce_instance"
 },
 "severity": "NOTICE",
 "timestamp": "2017-12-04T20:13:50.717Z"
}

Audit Log Message with no operation object:

{
 "insertId": "123456789101112",
 "logName": "projects/a-project/logs/cloudaudit.googleapis.com%2Factivity",
 "protoPayload": {
 "@type": "type.googleapis.com/google.cloud.audit.AuditLog",
 "authenticationInfo": {},
 "methodName": "v1.compute.instances.insert",
 "requestMetadata": {
 "callerSuppliedUserAgent": "Managed Infrastructure Mixer Client"
 },
 "resourceName": "projects/123456789101/zones/us-central1-c/instances/an-instance-name-a123b",
 "serviceName": "compute.googleapis.com"
 },
 "receiveTimestamp": "2017-12-04T20:13:51.414016721Z",
 "resource": {
 "labels": {
 "instance_id": "123456789101213141",
 "project_id": "a-project",
 "zone": "us-central1-c"
 },
 "type": "gce_instance"
 },
 "severity": "NOTICE",
 "timestamp": "2017-12-04T20:13:50.717Z"
}

General Event Message

The General Event Message schema is meant for any event that may not come from Google’s audit log sink. For instance, one may need to add/update/delete a manual record (i.e. marketing-friendly CNAME s). Or there may be a reconciliation process between the current state of the world and what is reflected in DNS.

Schema Definition

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "id": "https://github.com/spotify/gordon-gcp/blob/master/gordon_gcp/schemas/event.schema.json",
 "title": "Generic Event Messages",
 "description": "Schema for parsing generic event messages",
 "required": ["action", "timestamp", "resourceRecords"],
 "properties": {
 "action": {
 "description": "Add or delete resource record sets (rrdatas) listed",
 "type": "string",
 "enum": ["additions", "deletions"]
 },
 "timestamp": {
 "type": "string",
 "description": "Time the message was emitted",
 "examples": [
 "2018-01-01T23:13:45.123456789Z"
]
 },
 "resourceRecords": {
 "description": "DNS resource records upon which to act",
 "type": "object",
 "required": ["name", "rrdatas", "type"],
 "properties": {
 "name": {
 "description": "Record name",
 "type": "string",
 "examples": [
 "www.example.com.",
 "some-fqdn.subdomain.example.com."
]
 },
 "rrdatas": {
 "description": "Resource record(s) that `name` point to",
 "type": "array",
 "minItems": 1,
 "items": {
 "type": "string"
 },
 "uniqueItems": true,
 "examples": [
 "198.1.1.50",
 "example.com.",
 "some text value"
]
 },
 "ttl": {
 "description": "TTL in seconds; default 300 seconds",
 "type": "number",
 "maximum": 86400,
 "minimum": 60,
 "default": 300
 },
 "type": {
 "description": "Type of resource record(s) as supported by Google Cloud DNS",
 "type": "string",
 "enum": ["A", "AAAA", "CNAME", "MX", "NS", "PTR", "SOA", "SRV", "TXT"]
 }
 }
 }
 }
}

Examples

Event for an A record:

{
 "resourceRecords": {
 "name": "lynntest-a-1234.foo.spotify.net.",
 "rrdatas": [
 "10.1.2.3"
],
 "ttl": 300,
 "type": "A"
 },
 "timestamp": "2017-12-04T20:13:51.414016721Z",
 "action": "additions"
}

Event for an CNAME record:

{
 "action": "additions",
 "timestamp": "2017-12-04T20:13:51.414016721Z",
 "resourceRecords": {
 "name": "lynntest-a-1234.spotify.net.",
 "rrdatas": [
 "lynntest-a-1234.foo.spotify.net."
],
 "ttl": 300,
 "type": "CNAME"
 }
}

Event for an NS record:

{
 "action": "additions",
 "timestamp": "2017-12-04T20:13:51.414016721Z",
 "resourceRecords": {
 "name": "gordontest.spotify.net.",
 "rrdatas": [
 "ns-cloud-c1.googledomains.com.",
 "ns-cloud-c2.googledomains.com.",
 "ns-cloud-c3.googledomains.com.",
 "ns-cloud-c4.googledomains.com."
],
 "ttl": 21600,
 "type": "SOA"
 }
}

Validating

Module to load and validate GCP-related JSON schemas.

Schema file discovery is based on any JSON file in the
gordon_gcp/schema/schemas/ [https://github.com/spotify/gordon-gcp/tree/master/gordon_gcp/schemas]
directory.

For more information on this plugin’s schemas, see Schemas for Event Consuming.

Warning

The following documentation may change since the calling/using of
the this module is not yet incorporated into the plugin logic.

Schemas are loaded once at service startup. A JSON message/object is
validated against a given loaded schema upon receipt of message/object.
The schema to validate against is determined by the topic from which the
PubSub message is pulled.

To use:

>>> from gordon_gcp.schema import validate
>>> validator = validate.MessageValidator()
>>> validator.schemas
{
 'event': {
 'title': 'Generic Event Message',
 'type': 'object',
 'required': ...},
 'audit-log': {
 'title': 'Google Audit Log Message',
 'type': 'object',
 'required': ...}
}
>>> example_message = {'foo': 'bar'}
>>> validator.validate(example_message, 'event')

	
class gordon_gcp.MessageValidator

	Load packaged JSON schemas and validate a given JSON message.

	
schemas

	dict – schema name based on filename mapped to its
loaded JSON schema.

	Raises

	GCPGordonError – if unable to find or load schemas.

	
validate(message, schema_name)

	Validate a message given a schema.

	Parameters

	
	message (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Loaded JSON of pulled message from Google
PubSub.

	schema_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of schema to validate message
against. schema_name will be used to look up
schema from MessageValidator.schemas dict

	Raises

	
	InvalidMessageError – if message is invalid against the
given schema.

	InvalidMessageError – if given schema name can not be found.

Parsing

Module to parse loaded JSON messages according to GCP-related schemas
and return only the actionable data.

To use:

>>> import json
>>> from gordon_gcp.schema import parse
>>> parser = parse.MessageParser()
>>> # using an example file
>>> exp = 'gordon_gcp/schema/examples/audit-log.last-operation.json'
>>> with open(exp, 'r') as f:
... data = json.load(f)
>>> message = parser.parse(data, 'audit-log')
>>> message
{
 'action': 'additions',
 'resourceName': 'projects/.../instances/an-instance-name-b45c',
 'resourceRecords': []
}

	
class gordon_gcp.MessageParser

	Parse a message provided a given GCP schema.

	
parse(message, schema)

	Parse message according to schema.

message should already be validated against the given schema.
See Schema Definition for more information.

	Parameters

	
	message (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – message data to parse.

	schema (str [https://docs.python.org/3/library/stdtypes.html#str]) – valid message schema.

	Returns

	parsed message

	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])

Load and Validate Schemas

Module to load and validate GCP-related JSON schemas.

Schema file discovery is based on any JSON file in the
gordon_gcp/schema/schemas/ [https://github.com/spotify/gordon-gcp/tree/master/gordon_gcp/schemas]
directory.

For more information on this plugin’s schemas, see Schemas for Event Consuming.

Warning

The following documentation may change since the calling/using of
the this module is not yet incorporated into the plugin logic.

Schemas are loaded once at service startup. A JSON message/object is
validated against a given loaded schema upon receipt of message/object.
The schema to validate against is determined by the topic from which the
PubSub message is pulled.

To use:

>>> from gordon_gcp.schema import validate
>>> validator = validate.MessageValidator()
>>> validator.schemas
{
 'event': {
 'title': 'Generic Event Message',
 'type': 'object',
 'required': ...},
 'audit-log': {
 'title': 'Google Audit Log Message',
 'type': 'object',
 'required': ...}
}
>>> example_message = {'foo': 'bar'}
>>> validator.validate(example_message, 'event')

	
class gordon_gcp.schema.validate.MessageValidator

	Load packaged JSON schemas and validate a given JSON message.

	
schemas

	dict – schema name based on filename mapped to its
loaded JSON schema.

	Raises

	GCPGordonError – if unable to find or load schemas.

	
validate(message, schema_name)

	Validate a message given a schema.

	Parameters

	
	message (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Loaded JSON of pulled message from Google
PubSub.

	schema_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of schema to validate message
against. schema_name will be used to look up
schema from MessageValidator.schemas dict

	Raises

	
	InvalidMessageError – if message is invalid against the
given schema.

	InvalidMessageError – if given schema name can not be found.

Plugins

Currently available Google Cloud Platform plugins for the gordon [https://github.com/spotify/gordon] and gordon-janitor [https://github.com/spotify/gordon-janitor] services.

Attention

These plugins are internal modules for the core gordon [https://github.com/spotify/gordon] and gordon-janitor [https://github.com/spotify/gordon-janitor] logic. No other use cases are expected.

Todo

Add prose documentation for how to implement a plugin.

Gordon Service

Enricher

Client module to enrich an event message with any missing information
(such as IP addresses to a new hostname) and to generate the desired
record(s) (e.g. A or CNAME records). Once an event message is
done (either successfully enriched or met with errors along the way),
it will be placed into the appropriate channel, either the
success_channel or error_channel to be further handled by the
gordon core system.

Attention

The enricher client is an internal module for the core gordon
logic. No other use cases are expected.

	
class gordon_gcp.GCEEnricher(config, metrics, http_client, dns_client, **kwargs)

	Get needed instance information from Google Compute Engine.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – configuration relevant to Compute Engine.

	metrics (obj) – IMetricRelay implementation.

	http_client (AIOConnection) – client for interacting with
the GCE API.

	
handle_message(event_message)

	Enrich message with extra context and send it to the publisher.

When a message is successfully processed, it is passed to the
self.success_channel. However, if there is a problem
during processing, the message is passed to the
self.error_channel.

	Parameters

	event_message (GEventMessage) – message requiring
additional information.

Event Consumer

Client module to consume Google Cloud Pub/Sub messages and create an
event message to be passed around the gordon core system and its
plugins. Once an event message is created, it will be placed into the
success_channel to be further handled by the gordon core system.
While being processed by the other plugin(s), the consumer will
continuously extend the message’s ack deadline. When an event
message is done (either successfully published or met with errors) the
consumer will then ack the message in Pub/Sub to signify that the
work is complete.

Attention

The event consumer client is an internal module for the core gordon
logic. No other use cases are expected.

	
class gordon_gcp.GPSEventConsumer(config, success_channel, error_channel, metrics, subscriber, flow_control, validator, parser, loop, **kwargs)

	Consume messages from Google Cloud Pub/Sub.

Pub/Sub messages are continually consumed via google-cloud-python’s
pubsub module using gRPC. Every consumed message will create an
asyncio task that handles the message schema validation, creation
of a GEventMessage instance (event_msg), and the
forwarding on for further processing via the
self.success_channel. The pubsub module handles the message
ack deadline extension behind the scenes. Once the event_msg is
done processing, gordon’s core routing system will submit it back to
this consumer to be ack’ed via the handle_method method used for
pubsub cleanup.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – configuration relevant to Cloud Pub/Sub.

	success_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – a sink for successfully
processed interfaces.IEventMessages.

	error_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – a sink for
interfaces.IEventMessages that were not
processed due to problems.

	
handle_message(event_msg)

	Ack Pub/Sub message and update event message history.

	Parameters

	event_msg (GEventMessage) – message to clean up

	
run()

	Start consuming messages from Google Pub/Sub.

Once a Pub/Sub message is validated, a GEventMessage
is created for the message, then passed to the
self.success_channel to be handled by an IEnricher
plugin.

GDNS Publisher

Client module to publish DNS records from an event message. Once an event
message is done (either successfully published, or met with errors along the
way), it will placed into the appropriate channel, either the
success_channel` or error_channel to be further handled by the gordon
core system.

Attention

The publisher client is an internal module for the core gordon logic. No
other use cases are expected.

	
class gordon_gcp.GDNSPublisher(config, metrics, dns_client, **kwargs)

	Publish records to Google Cloud DNS.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Configuration relevant to Cloud DNS.

	success_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – A sink for successfully
processed interfaces.IEventMessages.

	error_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – A sink for
interfaces.IEventMessages that were not
processed due to problems.

	dns_client (gdns.GDNSClient) – A Google DNS HTTP connection class.

	
handle_message(event_msg)

	Publish changes extracted from the event message.

	Parameters

	event_msg (event_consumer.GEventMessage) – Contains the changes to publish.

	Raises

	InvalidDNSZoneInMessageError if the DNS zone of a resource record – does not match our configured zone.

Gordon Janitor

Reconciler

Module to compare desired record sets produced from a Resource Authority
(i.e. GCEInstanceAuthority for Google Compute Engine) and actual
record sets from Google Cloud DNS, then publish corrective messages to
the internal changes_channel if there are differences.

This client makes use of the asynchronous DNS client as defined in
GDNSClient, and therefore must use service account/JWT
authentication (for now).

See Janitor Configuration for the required Google DNS configuration.

Attention

This reconciler client is an internal module for the core janitor
logic. No other use cases are expected.

To use:

import asyncio
import gordon_gcp

config = {
 'keyfile': '/path/to/keyfile.json',
 'project': 'a-dns-project'
}
rrset_chnl = asyncio.Queue()
changes_chnl = asyncio.Queue()

reconciler = gordon_gcp.GDNSReconciler(
 config, rrset_chnl, changes_chnl)

loop = asyncio.get_event_loop()
try:
 loop.run_until_complete(reconciler.start())
finally:
 loop.close()

The keyfile is optional.
If not provided the default service account will be used.

	
class gordon_gcp.GDNSReconciler(config, metrics, dns_client, rrset_channel=None, changes_channel=None, **kw)

	Validate current records in DNS against desired source of truth.

GDNSReconciler will create a change message for the
configured publisher client plugin to consume if there is a
discrepancy between records in Google Cloud DNS and the desired
state.

Once validation is done, the Reconciler will emit a None message
to the changes_channel queue, signalling a Publisher client
(e.g. GPubsubPublisher) to publish the
message to a pub/sub to which Gordon [https://github.com/spotify/gordon] subscribes.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Google Cloud DNS-related configuration.

	metrics (obj) – IMetricRelay implementation.

	dns_client (GDNSClient) – Client to interact with Google Cloud
DNS API.

	rrset_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – Queue from which to consume
record set messages to validate.

	changes_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – Queue to publish message to
make corrections to Cloud DNS.

	
cleanup()

	Clean up & notify changes_channel of no more messages.

This method collects all tasks that this particular class
initiated, and will cancel them if they don’t complete within
the configured timeout period.

Once all tasks are done, None is added to the
changes_channel to signify that it has no more work to
process. Then the HTTP session attached to the dns_client
is properly closed.

	
static create_rrset_set(zone, rrsets, source=None)

	Create a set of ResourceRecordSets excluding SOA and zone’s NS.

	Parameters

	
	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – zone of the rrsets, for NS record exclusion.

	rrsets (list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict])) – collection of dict representation of RRSets.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) source to add to the rrset

	Returns

	set of ResourceRecordSet

	
publish_change_messages(desired_rrsets, action='additions')

	Publish change messages to the changes_channel.

NOTE: Only ‘additions’ are currently supported. ‘deletions’
may be supported in the future.

	Parameters

	
	desired_rrsets (list [https://docs.python.org/3/library/stdtypes.html#list](ResourceRecordSet)) – Desired record
sets that are not in Google Cloud DNS.

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – (optional) action for these corrective
messages. Defaults to 'additions'.

	
run()

	Publish necessary DNS changes to the changes_channel.

Consumes zone/rrset-list messages from rrset_channel, compares
them to the current records, and publishes the changes. Once None
is received from the channel, emits a final None message to the
changes_channel.

	
validate_rrsets_by_zone(zone, rrsets)

	Given a zone, validate current versus desired rrsets.

Returns lists of missing rrsets (in desired but not in current) and
extra rrsets (in current but not in desired). Extra rrsets that are the
result of updates in the desired list will not be returned, and root
SOA/NS comparisons are skipped.

	Parameters

	
	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – zone to query Google Cloud DNS API.

	rrsets (list [https://docs.python.org/3/library/stdtypes.html#list]) – desired record sets to which to compare the
Cloud DNS API’s response.

	Returns

	The missing and extra rrset sets.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][set [https://docs.python.org/3/library/stdtypes.html#set](rrset), set [https://docs.python.org/3/library/stdtypes.html#set](rrset)]

GPubSub Publisher

Client module to publish any required DNS changes initiated from
GDNSReconciler to Google Cloud Pub/Sub [https://cloud.google.com/pubsub/docs/overview]. The consumer of these messages is
the Gordon service [https://github.com/spotify/gordon].

This client wraps around google-cloud-pubsub [https://pypi.python.org/pypi/google-cloud-pubsub] using grpc [https://github.com/googleapis/googleapis/blob/master/google/pubsub/v1/pubsub.proto] rather than
inheriting from AIOConnection.

Attention

This publisher client is an internal module for the core janitor
logic. No other use cases are expected.

To use:

import asyncio
import gordon_gcp

config = {
 'keyfile': '/path/to/keyfile.json',
 'project': 'a-dns-project',
 'topic': 'a-topic',
}
changes_channel = asyncio.Queue()

publisher = gordon_gcp.get_gpubsub_publisher(
 config, changes_channel)

loop = asyncio.get_event_loop()
try:
 loop.run_until_complete(publisher.start())
finally:
 loop.close()

The keyfile is optional.
If not provided the default service account will be used.

	
class gordon_gcp.GPubsubPublisher(config, metrics, publisher, changes_channel=None, **kw)

	Client to publish change messages to Google Pub/Sub.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Google Cloud Pub/Sub-related configuration, ex.
‘projects/test-example/topics/a-topic’.

	publisher (google.cloud.pubsub_v1.publisher.client.Client [https://googleapis.dev/python/pubsub/latest/pubsub/publisher/api/client.html#google.cloud.pubsub_v1.publisher.client.Client]) – client to interface with Google Pub/Sub API.

	metrics (obj) – IMetricRelay implementation.

	changes_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – queue to publish message to
make corrections to Cloud DNS.

	
cleanup()

	Clean up outstanding tasks and emit final logs + metrics.

This method collects all tasks that this particular class
initiated, and will cancel them if they don’t complete within
the configured timeout period.

	
publish(message)

	Publish received change message to Google Pub/Sub.

	Parameters

	message (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – change message received from the
changes_channel to emit.

	
run()

	Start consuming from changes_channel.

Once None is received from the channel, finish processing
records and clean up any outstanding tasks.

Authority

A GCEAuthority retrieves a list of all instances in all projects that it has
access to, and which belong to the configured zone. For every project, it will
create a message containing domain record information and put it into the
rrset channel. Projects can be filtered by ‘project name’. Instances can be
filtered by tags and metadata.

To use:

import asyncio

from gordon_gcp.plugins import janitor

async def run():
 rrset_channel = asyncio.queue()
 authority = janitor.get_authority(config, rrset_channel)
 await authority.start()
 msg = await rrset_channel.get()
 print(msg)

loop = asyncio.get_event_loop()
loop.run_until_complete(run())
prints: {'zone': 'example.com', 'resourceRecords': [...]}

	
class gordon_gcp.GCEAuthority(config, metrics, crm_client, gce_client, rrset_channel=None, **kwargs)

	Gather instance data from GCE.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – plugin-specific configuration.

	metrics (obj) – IMetricRelay implementation.

	crm_client (GCRMClient) – client used to fetch GCE projects.

	gce_client (GCEClient) – client used to fetch instances for a project.

	rrset_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – channel to send resource record messages
to.

	
cleanup()

	Clean up after a run.

	
run()

	Batch instance data and send it to the self.rrset_channel.

API Clients

HTTP Sessions

Todo

Update prose of “…you can pass in your own session into an API client” with specific API client class names once they’re defined. Also update the example code using one API client.

By default, the HTTP session used for getting credentials is reused for API calls (recommended if there are many). If this is not desired, you can pass in your own aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] instance into an API client or AIOConnection. The auth client GAuthClient may also take an explicit session object, but is not required to assert a different HTTP session is used for the API calls.

import aiohttp
import gordon_gcp

keyfile = '/path/to/service_account_keyfile.json'
session = aiohttp.ClientSession() # optional
auth_client = gordon_gcp.GAuthClient(
 keyfile=keyfile, session=session
)

new_session = aiohttp.ClientSession()

basic HTTP client
client = gordon_gcp.AIOConnection(
 auth_client=auth_client, session=new_session
)

Asynchronous GCP HTTP Client

Module to interact with Google APIs via asynchronous HTTP calls.
AIOConnection is meant to be used/inherited by other
product-specific API clients as it handles Google authentication and
automatic refresh of tokens.

Todo

Include that it also handles retries once implemented.

To use:

import gordon_gcp

keyfile = '/path/to/service_account_keyfile.json'
auth_client = gordon_gcp.GAuthClient(keyfile=keyfile)

client = AIOConnection(auth_client=auth_client)
resp = await client.request('get', 'http://api.example.com/foo')

The keyfile is optional.
If not provided the default service account will be used.

	
class gordon_gcp.AIOConnection(auth_client=None, session=None)

	Async HTTP client to Google APIs with service-account-based auth.

	Parameters

	
	auth_client (GAuthClient) – client to manage authentication for
HTTP API requests.

	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – (optional) aiohttp HTTP
session to use for sending requests. Defaults to the session
object attached to auth_client if not provided.

	
get_all(url, params=None)

	Aggregate data from all pages of an API query.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – Google API endpoint URL.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) URL query parameters.

	Returns

	Parsed JSON query response results.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
get_json(url, json_callback=None, **kwargs)

	Get a URL and return its JSON response.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to be requested.

	json_callback (func) – Custom JSON loader function. Defaults
to json.loads().

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional arguments to pass through to the
request.

	Returns

	response body returned by json_callback() function.

	
request(method, url, params=None, headers=None, data=None, json=None, token_refresh_attempts=2, **kwargs)

	Make an asynchronous HTTP request.

	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – HTTP method to use for the request.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to be requested.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) Query parameters for the request.
Defaults to None.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) HTTP headers to send with the
request. Headers pass through to the request will
include DEFAULT_REQUEST_HEADERS.

	data (obj) – (optional) A dictionary, bytes, or file-like
object to send in the body of the request.

	json (obj) – (optional) Any json compatible python
object.
NOTE: json and body parameters cannot be used at the same time.

	token_refresh_attempts (int [https://docs.python.org/3/library/functions.html#int]) – (optional) Number of attempts a token
refresh should be performed.

	Returns

	(str) HTTP response body.

	Raises

	GCPHTTPError – if any exception occurred,
specifically a GCPHTTPResponseError, if the
exception is associated with a response status code.

	
valid_token_set()

	Check for validity of token, and refresh if none or expired.

GCP Auth Client

Module to create a client interacting with Google Cloud authentication.

An instantiated client is needed for interacting with any of the Google
APIs via the AIOConnection.

The GAuthClient supports both service account (JSON Web Tokens/JWT)
authentication with keyfiles, and default credentials. To setup a
service account, follow Google’s docs [https://cloud.google.com/iam/docs/creating-managing-service-account-keys]. More information on
default credentials can be found here. To
setup default credentials, follow Application Default Credentials [https://developers.google.com/identity/protocols/application-default-credentials].

If a keyfile is not provided, the Application Default Credentials will
be used.

To use:

>>> import asyncio
>>> import google_gcp
>>> loop = asyncio.get_event_loop()
>>> keyfile = '/path/to/service_account_keyfile.json'
with keyfile
>>> auth_client = google_gcp.GAuthClient(keyfile=keyfile)
with Application Default Credentials
>>> auth_client = google_gcp.GAuthClient()
>>> auth_client.token is None
True
>>> loop.run_until_complete(auth_client.refresh_token())
>>> auth_client.token
'c0ffe3'

	
class gordon_gcp.GAuthClient(keyfile=None, scopes=None, session=None, loop=None)

	Async client to authenticate against Google Cloud APIs.

	
SCOPE_TMPL_URL

	str – template URL for Google auth scopes.

	
DEFAULT_SCOPE

	str – default scope if not provided.

	
JWT_GRANT_TYPE

	str – grant type header value when
requesting/refreshing an access token.

	Parameters

	
	keyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to service account (SA) keyfile.

	scopes (list [https://docs.python.org/3/library/stdtypes.html#list]) – (optional) scopes with which to authorize the SA.
Default is 'cloud-platform'.

	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – (optional) aiohttp HTTP
session to use for sending requests.

	loop – (optional) asyncio event loop to use for HTTP requests.
NOTE: if session is given, then loop will be
ignored. Otherwise, loop will be used to create a
session, if provided.

	
refresh_token()

	Refresh oauth access token attached to this HTTP session.

	Raises

	
	GCPAuthError – if no token was found in the
response.

	GCPHTTPError – if any exception occurred,
specifically a GCPHTTPResponseError, if the
exception is associated with a response status code.

	
google.auth._default.default(scopes=None, request=None, quota_project_id=None, default_scopes=None)

	Gets the default credentials for the current environment.

Application Default Credentials [https://developers.google.com/identity/protocols/application-default-credentials] provides an easy way to obtain
credentials to call Google APIs for server-to-server or local applications.
This function acquires credentials from the environment in the following
order:

	If the environment variable GOOGLE_APPLICATION_CREDENTIALS is set
to the path of a valid service account JSON private key file, then it is
loaded and returned. The project ID returned is the project ID defined
in the service account file if available (some older files do not
contain project ID information).

If the environment variable is set to the path of a valid external
account JSON configuration file (workload identity federation), then the
configuration file is used to determine and retrieve the external
credentials from the current environment (AWS, Azure, etc).
These will then be exchanged for Google access tokens via the Google STS
endpoint.
The project ID returned in this case is the one corresponding to the
underlying workload identity pool resource if determinable.

If the environment variable is set to the path of a valid GDCH service
account JSON file (Google Distributed Cloud Hosted [https://cloud.google.com/blog/topics/hybrid-cloud/announcing-google-distributed-cloud-edge-and-hosted]), then a GDCH
credential will be returned. The project ID returned is the project
specified in the JSON file.

	If the Google Cloud SDK [https://cloud.google.com/sdk] is installed and has application default
credentials set they are loaded and returned.

To enable application default credentials with the Cloud SDK run:

gcloud auth application-default login

If the Cloud SDK has an active project, the project ID is returned. The
active project can be set using:

gcloud config set project

	If the application is running in the App Engine standard environment [https://cloud.google.com/appengine]
(first generation) then the credentials and project ID from the
App Identity Service [https://cloud.google.com/appengine/docs/python/appidentity/] are used.

	If the application is running in Compute Engine [https://cloud.google.com/compute] or Cloud Run [https://cloud.google.com/run] or
the App Engine flexible environment [https://cloud.google.com/appengine/flexible] or the App Engine standard
environment [https://cloud.google.com/appengine] (second generation) then the credentials and project ID
are obtained from the Metadata Service [https://cloud.google.com/compute/docs/storing-retrieving-metadata].

	If no credentials are found,
DefaultCredentialsError will be raised.

Example:

import google.auth

credentials, project_id = google.auth.default()

	Parameters

	
	scopes (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The list of scopes for the credentials. If
specified, the credentials will automatically be scoped if
necessary.

	request (Optional[google.auth.transport.Request]) – An object used to make
HTTP requests. This is used to either detect whether the application
is running on Compute Engine or to determine the associated project
ID for a workload identity pool resource (external account
credentials). If not specified, then it will either use the standard
library http client to make requests for Compute Engine credentials
or a google.auth.transport.requests.Request client for external
account credentials.

	quota_project_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The project ID used for
quota and billing.

	default_scopes (Optional[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Default scopes passed by a
Google client library. Use ‘scopes’ for user-defined scopes.

	Returns

	the current environment’s credentials and project ID. Project ID
may be None, which indicates that the Project ID could not be
ascertained from the environment.

	Return type

	Tuple[Credentials, Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Raises

	DefaultCredentialsError – If no credentials were found, or if the credentials found were
invalid.

GCP Cloud DNS HTTP Client

Client module to interact with the Google Cloud DNS API.

This client makes use of the asynchronus HTTP client as defined in
AIOConnection, and therefore must use service account/JWT
authentication (for now).

To use:

import asyncio
import gordon_gcp

keyfile = '/path/to/service_account_keyfile.json'
auth_client = gordon_gcp.GAuthClient(keyfile=keyfile)
client = gordon_gcp.GDNSClient(
 project='my-dns-project', auth_client=auth_client)

async def print_first_record(client)
 records = await client.get_records_for_zone('testzone')
 print(records[0])

loop = asyncio.get_event_loop()
loop.run_until_complete(print_first_record(client))

	
class gordon_gcp.GDNSClient(project=None, auth_client=None, api_version='v1', session=None, default_zone_prefix=None)

	Async HTTP client to interact with Google Cloud DNS API.

	
BASE_URL

	str – base call url for the DNS API

	Parameters

	
	project (str [https://docs.python.org/3/library/stdtypes.html#str]) – Google project ID that hosts the managed DNS.

	auth_client (GAuthClient) – client to manage authentication for
HTTP API requests.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – DNS API endpoint version. Defaults to v1.

	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – (optional) aiohttp HTTP
session to use for sending requests. Defaults to the session
object attached to auth_client if not provided.

	
get_managed_zone(zone)

	Get the GDNS managed zone name for a DNS zone.

Google uses custom string names with specific requirements [https://cloud.google.com/dns/api/v1/managedZones#resource]
for storing records. The scheme implemented here chooses a
managed zone name which removes the trailing dot and replaces
other dots with dashes, and in the case of reverse records,
uses only the two most significant octets, prepended with
‘reverse’. At least two octets are required for reverse DNS zones.

Example

get_managed_zone(‘example.com.’) = ‘example-com’
get_managed_zone(‘20.10.in-addr.arpa.) = ‘reverse-20-10’
get_managed_zone(‘30.20.10.in-addr.arpa.) = ‘reverse-20-10’
get_managed_zone(‘40.30.20.10.in-addr.arpa.) = ‘reverse-20-10’

	Parameters

	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – DNS zone.

	Returns

	str of managed zone name.

	
get_records_for_zone(dns_zone, params=None)

	Get all resource record sets for a managed zone, using the DNS zone.

	Parameters

	
	dns_zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – Desired DNS zone to query.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – (optional) Additional query parameters for HTTP
requests to the GDNS API.

	Returns

	list of dicts representing rrsets.

	
is_change_done(zone, change_id)

	Check if a DNS change has completed.

	Parameters

	
	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – DNS zone of the change.

	change_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier of the change.

	Returns

	Boolean

	
publish_changes(zone, changes)

	Post changes to a zone.

	Parameters

	
	zone (str [https://docs.python.org/3/library/stdtypes.html#str]) – DNS zone of the change.

	changes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – JSON compatible dict of a Change [https://cloud.google.com/dns/api/v1/changes].

	Returns

	string identifier of the change.

GCRM Client

Client classes to retrieve project and instance data from GCE.

These clients use the asynchronous HTTP client defined in
AIOConnection and require service account or JWT-token
credentials for authentication.

To use:

import asyncio

import aiohttp
import gordon_gcp

loop = asyncio.get_event_loop()

async def main():
 session = aiohttp.ClientSession()
 auth_client = gordon_gcp.GAuthClient(
 keyfile='/path/to/keyfile', session=session)
 client = gordon_gcp.GCEClient(auth_client, session)
 instances = await client.list_instances('project-id')
 print(instances)

loop.run_until_complete(main())
example output
[{'hostname': 'instance-1', 'internal_ip': '10.10.10.10',
'external_ip': '192.168.1.10'}]

	
class gordon_gcp.GCRMClient(auth_client=None, session=None, api_version='v1')

	Async client to interact with Google Cloud Resource Manager API.

You can find the endpoint documentation here [https://cloud.google.com/resource-manager/reference/rest/#rest-resource-v1projects].

	
BASE_URL

	str – Base endpoint URL.

	Parameters

	
	auth_client (GAuthClient) – client to manage authentication for
HTTP API requests.

	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – (optional) aiohttp HTTP
session to use for sending requests. Defaults to the
session object attached to auth_client if not provided.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – version of API endpoint to send requests to.

	
list_all_active_projects(page_size=1000)

	Get all active projects.

You can find the endpoint documentation here [https://cloud.google.com/resource-manager/reference/rest/v1/projects/list].

	Parameters

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – hint for the client to only retrieve up to
this number of results per API call.

	Returns

	all active projects

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](dicts)

GCE Client

Client classes to retrieve project and instance data from GCE.

These clients use the asynchronous HTTP client defined in
AIOConnection and require service account or JWT-token
credentials for authentication.

To use:

import asyncio

import aiohttp
import gordon_gcp

loop = asyncio.get_event_loop()

async def main():
 session = aiohttp.ClientSession()
 auth_client = gordon_gcp.GAuthClient(
 keyfile='/path/to/keyfile', session=session)
 client = gordon_gcp.GCEClient(auth_client, session)
 instances = await client.list_instances('project-id')
 print(instances)

loop.run_until_complete(main())
example output
[{'hostname': 'instance-1', 'internal_ip': '10.10.10.10',
'external_ip': '192.168.1.10'}]

	
class gordon_gcp.GCEClient(auth_client=None, session=None, api_version='v1', blacklisted_tags=None, blacklisted_metadata=None)

	Async client to interact with Google Cloud Compute API.

	
BASE_URL

	str – base compute endpoint URL.

	Parameters

	
	auth_client (GAuthClient) – client to manage authentication for
HTTP API requests.

	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – (optional) aiohttp HTTP
session to use for sending requests. Defaults to the
session object attached to auth_client if not
provided.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – version of API endpoint to send requests to.

	blacklisted_tags (list [https://docs.python.org/3/library/stdtypes.html#list]) – Do not collect an instance if it has
been tagged with any of these.

	blacklisted_metadata (list [https://docs.python.org/3/library/stdtypes.html#list]) – Do not collect an instance if its
metadata key:val matches a {key:val} dict in this list.

	
list_instances(project, page_size=100, instance_filter=None)

	Fetch all instances in a GCE project.

You can find the endpoint documentation here [https://cloud.google.com/compute/docs/reference/latest/instances/aggregatedList].

	Parameters

	
	project (str [https://docs.python.org/3/library/stdtypes.html#str]) – unique, user-provided project ID.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – hint for the client to only retrieve up to
this number of results per API call.

	instance_filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – endpoint-specific filter string used
to retrieve a subset of instances. This is passed
directly to the endpoint’s “filter” URL query parameter.

	Returns

	
	data of all instances in the given

	project

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list](dicts)

Exceptions

Any exception that this module could throw.

	
class gordon_gcp.GCPGordonError

	General Gordon GCP Plugin Error.

	
class gordon_gcp.GCPGordonJanitorError

	General Gordon GCP Janitor Plugin Error.

	
class gordon_gcp.InvalidMessageError

	Consumed an invalid message from Google Pub/Sub.

	
class gordon_gcp.InvalidDNSZoneInMessageError

	Raised when a message with an invalid DNS zone is consumed.

	
class gordon_gcp.GCPHTTPError

	An error occurred while processing an HTTP request.

	
class gordon_gcp.GCPHTTPResponseError(message, status)

	An HTTP response had an error associated with a status code.

	
class gordon_gcp.GCPAuthError

	Authentication error with Google Cloud.

	
class gordon_gcp.GCPConfigError

	Improper or incomplete configuration for plugin.

	
class gordon_gcp.GCPPublishRecordTimeoutError

	Time out error when attempting to publish records.

License and Credits

gordon-gcp is licensed under the Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0] license.
The full license text can be also found in the source code repository [https://github.com/spotify/gordon-gcp/blob/master/LICENSE].

How to Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and gordon, gordon-janitor, and their plugins are no different.

This project adheres to the Open Code of Conduct [https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md]. By participating, you are expected to honor this code. If the core project maintainers/owners feel that this Code of Conduct has been violated, we reserve the right to take appropriate action, including but not limited to: private or public reprimand; temporary or permanent ban from the project; request for public apology.

Communication/Support

Feel free to drop by the Spotify FOSS Slack organization [https://slackin.spotify.com/] in the #gordon channel.

Contributor Guidelines/Requirements

Contributors should expect a response within one week of an issue being opened or a pull request being submitted. More time should be allowed around holidays. Feel free to ping your issue or PR if you have not heard a timely response.

Submitting Bugs

Before submitting, users/contributors should do the following:

	
	Basic troubleshooting:

	
	Make sure you’re on the latest supported version. The problem may be solved already in a later release.

	Try older versions. If you’re on the latest version, try rolling back a few minor versions. This will help maintainers narrow down the issue.

	Try the same for dependency versions - up/downgrading versions.

	Search the project’s issues to make sure it’s not already known, or if there is already an outstanding pull request to fix it.

	If you don’t find a pre-existing issue, check the discussion on Slack. There may be some discussion history, and if not, you can ask for help in figuring out if it’s a bug or not.

What to include in a bug report:

	What version of Python is being used? i.e. 2.7.13, 3.6.2, PyPy 2.0

	What operating system are you on? i.e. Ubuntu 14.04, RHEL 7.4

	What version(s) of the software are you using?

	How can the developers recreate the bug? Steps to reproduce or a simple base case that causes the bug is extremely helpful.

Contributing Patches

No contribution is too small. We welcome fixes for typos and grammar bloopers just as much as feature additions and fixes for code bloopers!

	Check the outstanding issues and pull requests first to see if development is not already being done for what you which to change/add/fix.

	If an issue has the available label on it, it’s up for grabs for anyone to work on. If you wish to work on it, just comment on the ticket so we can remove the available label.

	Do not break backwards compatibility.

	Once any feedback is addressed, please comment on the pull request with a short note, so we know that you’re done.

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Workflow

	This project follows the gitflow [http://nvie.com/posts/a-successful-git-branching-model/] branching model. Please name your branch accordingly.

	Always make a new branch for your work, no matter how small. Name the branch a short clue to the problem you’re trying to fix or feature you’re adding.

	Ideally, a branch should map to a pull request. It is possible to have multiple pull requests on one branch, but is discouraged for simplicity.

	Do not submit unrelated changes on the same branch/pull request.

	Multiple commits on a branch/pull request is fine, but all should be atomic, and relevant to the goal of the PR. Code changes for a bug fix, plus additional tests (or fixes to tests) and documentation should all be in one commit.

	Pull requests should be rebased off of develop.

	To finish and merge a release branch, project maintainers should first create a PR to merge the branch into develop. Then, they should merge the release branch into master locally and push to master afterwards.

	Bugfixes meant for a specific release branch should be merged into that branch through PRs.

Code

	See docs on how to setup your environment for development.

	Code should follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html].

	
	Documentation is not optional.

	
	Docstrings are required for public API functions, methods, etc. Any additions/changes to the API functions should be noted in their docstrings (i.e. “added in 2.5”)

	If it’s a new feature, or a big change to a current feature, consider adding additional prose documentation, including useful code snippets.

	
	Tests aren’t optional.

	
	Any bug fix should have a test case that invokes the bug.

	Any new feature should have test coverage hitting at least $PERCENTAGE.

	Make sure your tests pass on our CI. You will not get any feedback until it’s green, unless you ask for help.

	Write asserts as “expected == actual” to avoid any confusion.

	Add good docstrings for test cases.

Github Labels

The super secret decoder ring for the labels applied to issues and pull requests.

Triage Status

	needs triaging: a new issue or pull request that needs to be triaged by the goalie

	no repro: a filed (closed) bug that can not be reproduced - issue can be reopened and commented upon for more information

	won’t fix: a filed issue deemed not relevant to the project or otherwise already answered elsewhere (i.e. questions that were answered via linking to documentation or stack overflow, or is about GCP products/something we don’t own)

	duplicate: a duplicate issue or pull request

	waiting for author: issue/PR has questions or requests feedback, and is awaiting the other for a response/update

Development Status

To be prefixed with Status:, e.g. Status: abandoned.

	abandoned: issue or PR is stale or otherwise abandoned

	available: bug/feature has been confirmed, and is available for anyone to work on (but won’t be worked on by maintainers)

	blocked: issue/PR is blocked (reason should be commented)

	completed: issue has been addressed (PR should be linked)

	wip: issue is currently being worked on

	on hold: issue/PR has development on it, but is currently on hold (reason should be commented)

	pending: the issue has been triaged, and is pending prioritization for development by maintainers

	review needed: awaiting a review from project maintainers

Types

To be prefixed with Type: e.g. Type: bug.

	bug: a bug confirmed via triage

	feature: a feature request/idea/proposal

	improvement: an improvement on existing features

	maintenance: a task for required maintenance (e.g. update a dependency for security patches)

	extension: issues, feature requests, or PRs that support other services/libraries separate from core

Local Development Environment

TODO

Changelog

0.0.1.dev38 (2021-04-09)

Fixed

	Update aiohttp due to a security bug

0.0.1.dev37 (2020-06-01)

Changed

	Make keyfile optional

0.0.1.dev36 (2020-05-08)

Changed

	Ensure to use correct email when calling metadata token url

0.0.1.dev35 (2020-04-30)

Changed

	Support compute engine credentials when refreshing token.

0.0.1.dev34 (2020-04-20)

Changed

	Fallback to default token URI if not set.

0.0.1.dev33 (2020-04-17)

Changed

	Widen regex in auditlog schema to work with more use cases.

0.0.1.dev32 (2019-02-26)

Changed

	Exit (code=1) on failure to create pubsub subscription.

Fixed

	Fix reconciler bug introduced in v0.0.1.dev31.

0.0.1.dev31 (2019-02-18)

Updated

	Adjust metrics for graph optimization and to include source in janitor.

0.0.1.dev30 (2018-12-12)

Added

	Add metrics for record dispatching.

0.0.1.dev29 (2018-12-05)

Added

	Add project_whitelist config to janitor authority.

0.0.1.dev28 (2018-10-19)

Added

	Allow supplying custom managed zone name prefix.

0.0.1.dev27 (2018-10-16)

Removed

	Revert filtering out instances with status = TERMINATED in the authority.

0.0.1.dev26 (2018-10-15)

Added

	Filter out instances with status = TERMINATED in the authority.

Changed

	Lower minimum TTL for the event schema to 60.

Fixed

	Correct an external URL used in doc generation.

0.0.1.dev25 (2018-09-20)

Removed

	Removed superfluous jsonschema validation logging.

0.0.1.dev23 & 0.0.1.dev24 (2018-09-12/13)

Added

	Add logging on aiohttp request calls.

0.0.1.dev22 (2018-09-10)

Fixed

	Fix incorrect function call in GDNS publisher.

0.0.1.dev21 (2018-09-07)

Changed

	Bump upstream Gordon package requirements.

0.0.1.dev20 (2018-09-07)

Fixed

	Fix bug in date comparison in drop-old-message functionality.

Added

	Add metrics to the janitor.

Changed

	Speed up the reconciler.

0.0.1.dev19 (2018-08-14)

Fixed

	Fix paging of GDNS responses.

	Make setup.py work with direct github commit links.

Added

	Drop messages older than a limit.

Changed

	Remove managed zone from plugin configuration in favor of automated conversion from DNS zone.

	Do DNS zone to managed zone conversion only in GDNSClient.

0.0.1.dev18 (2018-08-01)

Added

	Add HTTP 403 response code to janitor PROJECT_SKIP_RESP_CODES constant.

Changed

	Default max results to 100 when listing instances in GCE client.

0.0.1.dev17 (2018-07-27)

Added

	Add callback in pubsub publisher.

0.0.1.dev16 (2018-07-26)

Fixed

	Fix incorrect and superfluous authority logging.

Added

	Add deletions to the janitor reconciler.

Changed

	Simplify HTTP error response handling.

	Fail authority if it cannot get a full view of of all instances.

Removed

	Removed GCPHTTPNotFoundError and GCPHTTPConflictError.

0.0.1.dev15 (2018-07-17)

Changed

	Increase level of detail in HTTP request/response logging.

Fixed

	Properly support ‘deletions’ action.

0.0.1.dev14 (2018-07-10)

Added

	Add kind attribute to GCPResourceRecordSet object.

	Add request concurrency to GCE listing of instances.

0.0.1.dev13 (2018-07-03)

Changed

	Update gordon-cloud-pubsub version to 0.35.4.

Removed

	Remove the use of _GPSThreads.

0.0.1.dev12 (2018-06-28)

Fixed

	Clean up GPThread instances once done.

0.0.1.dev11 (2018-06-25)

Changed

	Janitor: Skip project if listing instances fails.

	Extract response rrsets properly.

	Make params optional when calling http.get_all.

0.0.1.dev10 (2018-06-20)

Changed

	Updated the Google API compute v1 endpoint URL.

0.0.1.dev9 (2018-06-20)

Added

	Add threadsafety when adding a message to the success channel from GPSEventConsumer.

	Add flow control when consuming from Pub/Sub.

Changed

	Update interface implementation of GEventMessage.

Removed

	Remove date validation in schemas.

0.0.1.dev8 (2018-06-18)

Changed

	Reorder args for GCEEnricher.

0.0.1.dev7 (2018-06-15)

Changed

	Update gordon-dns to 0.0.1.dev3.

Removed

	Remove routing logic from plugins.

0.0.1.dev6 (2018-06-07)

Changed

	Internal API improvements.

0.0.1.dev5 (2018-06-07)

Changed

	Fix failure for core to instantiate GDNSPublisher plugin.

	Internal API improvements.

0.0.1.dev4 (2018-06-05)

Added

	Merged gordon-janitor-gcp repo into gordon-gcp.

	Added janitor plugin summaries.

	Added missing exception docs.

Changed

	Updated and fixed OWNERS.

	Cleaned up some capitalizations and wordings.

	Suppressed a test warning.

	Fixed namespace collapses (__all__ / import *).

Added

	Add implementation of IEventConsumer.

	Add implementation of IPublisher.

	Add implementation of IEnricher.

	Add support on loading credentials with application default credentials.

	Add support for POST JSON requests to HTTP client.

0.0.1.dev2 (2018-03-29)

Changed

Fixed packaging.

0.0.1.dev1 (2018-03-28)

Changed

Initial development release.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gordon_gcp	

 	
 	
 gordon_gcp.clients.auth	

 	
 	
 gordon_gcp.clients.gce	

 	
 	
 gordon_gcp.clients.gcrm	

 	
 	
 gordon_gcp.clients.gdns	

 	
 	
 gordon_gcp.clients.http	

 	
 	
 gordon_gcp.plugins.janitor.authority	

 	
 	
 gordon_gcp.plugins.janitor.gpubsub_publisher	

 	
 	
 gordon_gcp.plugins.janitor.reconciler	

 	
 	
 gordon_gcp.plugins.service.enricher	

 	
 	
 gordon_gcp.plugins.service.event_consumer	

 	
 	
 gordon_gcp.plugins.service.gdns_publisher	

 	
 	
 gordon_gcp.schema.parse	

 	
 	
 gordon_gcp.schema.validate	

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | V

A

 	
 	AIOConnection (class in gordon_gcp)

 	
 	
 api_version="STR"

 	command line option

B

 	
 	BASE_URL (gordon_gcp.GCEClient attribute)

 	(gordon_gcp.GCRMClient attribute)

 	(gordon_gcp.GDNSClient attribute)

C

 	
 	cleanup() (gordon_gcp.GCEAuthority method)

 	(gordon_gcp.GDNSReconciler method)

 	(gordon_gcp.GPubsubPublisher method)

 	
 cleanup_timeout=INT

 	command line option

 	
 command line option

 	api_version="STR"

 	cleanup_timeout=INT

 	default_ttl=INT

 	default_zone_prefix="STR", [1]

 	dns_zone="STR", [1]

 	instance_filter="STR"

 	keyfile="/path/to/keyfile.json", [1]

 	max_messages=INT

 	max_msg_age=INT

 	metadata_blacklist=[["STR","STR"],["STR","STR"]]

 	project="STR", [1]

 	project_blacklist=["STR","STR"]

 	project_whitelist=["STR","STR"]

 	publish_wait_timeout=INT|FLOAT

 	scopes=["STR","STR"]

 	subscription="STR"

 	tag_blacklist=["STR","STR"]

 	topic="STR", [1]

 	
 	create_rrset_set() (gordon_gcp.GDNSReconciler static method)

D

 	
 	default() (in module google.auth._default)

 	DEFAULT_SCOPE (gordon_gcp.GAuthClient attribute)

 	
 default_ttl=INT

 	command line option

 	
 	
 default_zone_prefix="STR"

 	command line option, [1]

 	
 dns_zone="STR"

 	command line option, [1]

G

 	
 	GAuthClient (class in gordon_gcp)

 	GCEAuthority (class in gordon_gcp)

 	GCEClient (class in gordon_gcp)

 	GCEEnricher (class in gordon_gcp)

 	GCPAuthError (class in gordon_gcp)

 	GCPConfigError (class in gordon_gcp)

 	GCPGordonError (class in gordon_gcp)

 	GCPGordonJanitorError (class in gordon_gcp)

 	GCPHTTPError (class in gordon_gcp)

 	GCPHTTPResponseError (class in gordon_gcp)

 	GCPPublishRecordTimeoutError (class in gordon_gcp)

 	GCRMClient (class in gordon_gcp)

 	GDNSClient (class in gordon_gcp)

 	GDNSPublisher (class in gordon_gcp)

 	GDNSReconciler (class in gordon_gcp)

 	get_all() (gordon_gcp.AIOConnection method)

 	get_json() (gordon_gcp.AIOConnection method)

 	
 	get_managed_zone() (gordon_gcp.GDNSClient method)

 	get_records_for_zone() (gordon_gcp.GDNSClient method)

 	gordon_gcp.clients.auth (module)

 	gordon_gcp.clients.gce (module)

 	gordon_gcp.clients.gcrm (module)

 	gordon_gcp.clients.gdns (module)

 	gordon_gcp.clients.http (module)

 	gordon_gcp.plugins.janitor.authority (module)

 	gordon_gcp.plugins.janitor.gpubsub_publisher (module)

 	gordon_gcp.plugins.janitor.reconciler (module)

 	gordon_gcp.plugins.service.enricher (module)

 	gordon_gcp.plugins.service.event_consumer (module)

 	gordon_gcp.plugins.service.gdns_publisher (module)

 	gordon_gcp.schema.parse (module)

 	gordon_gcp.schema.validate (module), [1]

 	GPSEventConsumer (class in gordon_gcp)

 	GPubsubPublisher (class in gordon_gcp)

H

 	
 	handle_message() (gordon_gcp.GCEEnricher method)

 	(gordon_gcp.GDNSPublisher method)

 	(gordon_gcp.GPSEventConsumer method)

I

 	
 	
 instance_filter="STR"

 	command line option

 	
 	InvalidDNSZoneInMessageError (class in gordon_gcp)

 	InvalidMessageError (class in gordon_gcp)

 	is_change_done() (gordon_gcp.GDNSClient method)

J

 	
 	JWT_GRANT_TYPE (gordon_gcp.GAuthClient attribute)

K

 	
 	
 keyfile="/path/to/keyfile.json"

 	command line option, [1]

L

 	
 	list_all_active_projects() (gordon_gcp.GCRMClient method)

 	
 	list_instances() (gordon_gcp.GCEClient method)

M

 	
 	
 max_messages=INT

 	command line option

 	
 max_msg_age=INT

 	command line option

 	
 	MessageParser (class in gordon_gcp)

 	MessageValidator (class in gordon_gcp)

 	(class in gordon_gcp.schema.validate)

 	
 metadata_blacklist=[["STR","STR"],["STR","STR"]]

 	command line option

P

 	
 	parse() (gordon_gcp.MessageParser method)

 	
 project="STR"

 	command line option, [1]

 	
 project_blacklist=["STR","STR"]

 	command line option

 	
 project_whitelist=["STR","STR"]

 	command line option

 	
 	publish() (gordon_gcp.GPubsubPublisher method)

 	publish_change_messages() (gordon_gcp.GDNSReconciler method)

 	publish_changes() (gordon_gcp.GDNSClient method)

 	
 publish_wait_timeout=INT|FLOAT

 	command line option

R

 	
 	refresh_token() (gordon_gcp.GAuthClient method)

 	request() (gordon_gcp.AIOConnection method)

 	run() (gordon_gcp.GCEAuthority method)

 	(gordon_gcp.GDNSReconciler method)

 	(gordon_gcp.GPSEventConsumer method)

 	(gordon_gcp.GPubsubPublisher method)

S

 	
 	schemas (gordon_gcp.MessageValidator attribute)

 	(gordon_gcp.schema.validate.MessageValidator attribute)

 	SCOPE_TMPL_URL (gordon_gcp.GAuthClient attribute)

 	
 	
 scopes=["STR","STR"]

 	command line option

 	
 subscription="STR"

 	command line option

T

 	
 	
 tag_blacklist=["STR","STR"]

 	command line option

 	
 	
 topic="STR"

 	command line option, [1]

V

 	
 	valid_token_set() (gordon_gcp.AIOConnection method)

 	validate() (gordon_gcp.MessageValidator method)

 	(gordon_gcp.schema.validate.MessageValidator method)

 	
 	validate_rrsets_by_zone() (gordon_gcp.GDNSReconciler method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 gordon-gcp: GCP Plugins for Gordon and Gordon Janitor

 		
 Service Configuration

 		
 Example Gordon Configuration with GCP Plugin

 		
 Plugin Configuration

 		
 [gcp]

 		
 [gcp.event_consumer]

 		
 [gcp.enricher]

 		
 [gcp.publisher]

 		
 Janitor Configuration

 		
 Example Configuration

 		
 Plugin Configuration

 		
 gcp

 		
 gcp.gdns

 		
 gcp.gpubsub

 		
 gcp.gce

 		
 Schemas for Event Consuming

 		
 Definitions

 		
 Google Audit Log Message

 		
 General Event Message

 		
 Validating

 		
 Parsing

 		
 Load and Validate Schemas

 		
 Plugins

 		
 Gordon Service

 		
 Enricher

 		
 Event Consumer

 		
 GDNS Publisher

 		
 Gordon Janitor

 		
 Reconciler

 		
 GPubSub Publisher

 		
 Authority

 		
 API Clients

 		
 HTTP Sessions

 		
 Asynchronous GCP HTTP Client

 		
 GCP Auth Client

 		
 GCP Cloud DNS HTTP Client

 		
 GCRM Client

 		
 GCE Client

 		
 Exceptions

 		
 License and Credits

 		
 How to Contribute

 		
 Communication/Support

 		
 Contributor Guidelines/Requirements

 		
 Submitting Bugs

 		
 Contributing Patches

 		
 Github Labels

 		
 Local Development Environment

 		
 Changelog

 		
 0.0.1.dev38 (2021-04-09)

 		
 Fixed

 		
 0.0.1.dev37 (2020-06-01)

 		
 Changed

 		
 0.0.1.dev36 (2020-05-08)

 		
 Changed

 		
 0.0.1.dev35 (2020-04-30)

 		
 Changed

 		
 0.0.1.dev34 (2020-04-20)

 		
 Changed

 		
 0.0.1.dev33 (2020-04-17)

 		
 Changed

 		
 0.0.1.dev32 (2019-02-26)

 		
 Changed

 		
 Fixed

 		
 0.0.1.dev31 (2019-02-18)

 		
 Updated

 		
 0.0.1.dev30 (2018-12-12)

 		
 Added

 		
 0.0.1.dev29 (2018-12-05)

 		
 Added

 		
 0.0.1.dev28 (2018-10-19)

 		
 Added

 		
 0.0.1.dev27 (2018-10-16)

 		
 Removed

 		
 0.0.1.dev26 (2018-10-15)

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.0.1.dev25 (2018-09-20)

 		
 Removed

 		
 0.0.1.dev23 & 0.0.1.dev24 (2018-09-12/13)

 		
 Added

 		
 0.0.1.dev22 (2018-09-10)

 		
 Fixed

 		
 0.0.1.dev21 (2018-09-07)

 		
 Changed

 		
 0.0.1.dev20 (2018-09-07)

 		
 Fixed

 		
 Added

 		
 Changed

 		
 0.0.1.dev19 (2018-08-14)

 		
 Fixed

 		
 Added

 		
 Changed

 		
 0.0.1.dev18 (2018-08-01)

 		
 Added

 		
 Changed

 		
 0.0.1.dev17 (2018-07-27)

 		
 Added

 		
 0.0.1.dev16 (2018-07-26)

 		
 Fixed

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.0.1.dev15 (2018-07-17)

 		
 Changed

 		
 Fixed

 		
 0.0.1.dev14 (2018-07-10)

 		
 Added

 		
 0.0.1.dev13 (2018-07-03)

 		
 Changed

 		
 Removed

 		
 0.0.1.dev12 (2018-06-28)

 		
 Fixed

 		
 0.0.1.dev11 (2018-06-25)

 		
 Changed

 		
 0.0.1.dev10 (2018-06-20)

 		
 Changed

 		
 0.0.1.dev9 (2018-06-20)

 		
 Added

 		
 Changed

 		
 Removed

 		
 0.0.1.dev8 (2018-06-18)

 		
 Changed

 		
 0.0.1.dev7 (2018-06-15)

 		
 Changed

 		
 Removed

 		
 0.0.1.dev6 (2018-06-07)

 		
 Changed

 		
 0.0.1.dev5 (2018-06-07)

 		
 Changed

 		
 0.0.1.dev4 (2018-06-05)

 		
 Added

 		
 Changed

 		
 Added

 		
 0.0.1.dev2 (2018-03-29)

 		
 Changed

 		
 0.0.1.dev1 (2018-03-28)

 		
 Changed

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/spotify_icon_green.png

_static/up-pressed.png

